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1. Introduction

Critical behavior in gravitational collapse has been widely studied in General Relativity

since its discovery by Choptuik [1] (see [2] for an updated review). Recently, the emergence

and relevance of this phenomenon has been studied also in other realms. As an example,

in [3] a proposal was put forward for a holographic description of critical gravitational

collapse in terms of high energy scattering in gauge theories. In [4] Choptuik-like critical

behavior was found in the context of transplanckian scattering [5].

In this letter we present a detailed study of the emergence of critical behavior in the

formation of a marginal trapped surface in the collision of two gravitational shock waves,

both in anti-de Sitter (AdS) and Minkowski space-time. To summarize our results, in

AdS space we have found a dimension-dependent critical behavior in the formation of a

marginally trapped surface in the head-on collision of two shock waves with respect to the

width of the waves in transverse space. In both four and five dimensions we showed the

existence of a critical value of this width above which the trapped surface is never formed.

In the four-dimensional case the behavior found is what we could denote as type I, i.e.

the trapped surface presents a finite size at criticality and its scaling is characterized by a

critical exponent γ = 1
2 . In the five-dimensional case, on the other hand, we showed that

the trapped surface has zero size at criticality. This type II scaling is described by a critical

exponent γ = 1. Finally, for dimensions larger than five, we find that a marginally trapped

surface is always formed for any value of the spread of the incoming waves.

In flat space-time the obtained results are qualitatively the same as those obtained for

AdS. The only quantitative difference appears in five dimension where the critical exponent

is γ = 1
2 instead of 1.
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2. Critical behavior in head-on shock wave collisions in AdS space-time

Our aim in this section is to study the formation of closed trapped surfaces in the head-on

collision of two shock waves with an “extension” in transverse space characterized by a

parameter ω. We start by studying the problem in AdS space, following the setup used in

ref. [6], to study afterwards the case without a cosmological constant.

Let us begin by briefly reviewing the results of ref. [6] with a slight change in notation.

We consider a shock wave propagating in D-dimensional AdS space-time, characterized by

the line element

ds2 =
L2

z2

(

− dudv + d~x 2
T + dz2

)

+
L

z
Φ(z, ~xT ) δ(u) du2. (2.1)

This metric is a solution to the Einstein equations for an energy momentum tensor with

the single nonvanishing component

Tuu = ρ(z, ~xT )δ(u), (2.2)

provided the metric function Φ(z, ~xT ) satisfies the equation
(

�HD−2
− D − 2

L2

)

Φ(z, ~xT ) = −16πGN
z

L
ρ(z, ~xT ), (2.3)

where �HD−2
is the Laplace operator on the (D − 2)-dimensional hyperbolic space HD−2

�HD−2
≡ zD−2

L2
∂z

(

z4−D∂z

)

+
z2

L2
~∇2

T . (2.4)

We are interested in solutions with O(D − 2) symmetry. This means that the func-

tion Φ(z, ~xT ) depends on the transverse coordinates only through the so-called “chordal”

coordinate q defined as1

q ≡ (z − L)2 + ~x 2
T

4Lz
. (2.5)

In order to have solutions to (2.3) with the required invariance we introduce the

rescaled density

ρ(z, ~xT ) ≡ z

L
ρ(z, ~xT ), (2.6)

which we take to depend only on q. Writing the line element of HD−2 in terms of the

chordal coordinate q

ds2
HD−2

= L2

[

dq2

q(q + 1)
+ 4q(q + 1)dΩ2

D−3

]

, (2.7)

we find that eq. (2.3) can be written as

q(q + 1)Φ′′(q) +
1

2
(D − 2)(1 + 2q)Φ′(q) − (D − 2)Φ(q) = −16πGNL

2ρ(q). (2.8)

1Geometrically, this coordinate represents the square distance in embedding space, measured in units of

4L2, between the points (z, ~xT ) and (L,~0) of HD−2.
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As shown in [6] the solution to the previous equation behaves asymptotically for large

q as

Φ(q) ∼ 8πGNL
2

D − 1
Φ+(q)

∫ ∞

0
dq′(1 + 2q′)[q′(1 + q′)]

D−4

2 ρ(q′)

=
26−DL4−DπGN

Vol(SD−3)(D − 1)
E Φ+(q), (2.9)

where

Φ+(q) = q2−D
2F1

(

D − 2,
D

2
;D;−1

q

)

(2.10)

and the energy E is defined by

E = 2D−3LD−2Vol(SD−3)µ

∫ ∞

0
dq′(1 + 2q′)[q′(1 + q′)]

D−4

2 ρ(q′). (2.11)

The next question to be discussed is whether or not a black hole is formed as the

result of the head-on collision of two waves of the type described above. In the region

{u < 0} ∪ {v < 0}, i.e. the part of the space-time previous to the collision, the metric is

given by

ds2 =
L2

z2

(

− dudv + d~x 2
T + dz2

)

+
L

z
Φ1(z, ~xT )θ(v)δ(u)du2 +

L

z
Φ2(z, ~xT )θ(u)δ(v)dv2 . (2.12)

A rigorous analysis of the formation of a black hole in the collision would require to solve

the Einstein equations in the interaction region {u > 0, v > 0} (see, for example, [7]). A

sufficient condition for black hole formation, however, is the existence of a marginal closed

trapped surface in the hypersurface {u ≤ 0, v = 0} ∪ {u = 0, v ≤ 0} [8 – 11, 6]. In order to

find this trapped surfce, however, the coordinates used to write the line element (2.12) are

not very convenient since null geodesics are discontinuous across the wave fronts u = 0,

v = 0. This can be avoided by switching to a new system of coordinates (U, V,Z, ~XT ) in

which the delta function terms are eliminated in the metric (see [9, 7]) and the geodesics

are continuous.

In this new system of coordinates the trapped surface we are looking for has two parts

that we denote by S1 and S2 and respectively lie in the regions V < 0 and U < 0. They

are defined in terms of two functions ψ1(Z, ~XT ) and ψ2(Z, ~XT ) by

S1 :

{

U = 0

V + ψ1(Z, ~XT ) = 0
, S2 :

{

V = 0

U + ψ2(Z, ~XT ) = 0
, (2.13)

with the additional boundary conditions at the intersection C = {U = V = 0}

ψ1(Z, ~XT )

∣

∣

∣

∣

∣

C

= 0, ψ2(Z, ~XT )

∣

∣

∣

∣

∣

C

= 0 (2.14)
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and

[

∂Zψ1∂Zψ2 + (~∇ψ1) · (~∇ψ2)
]

∣

∣

∣

∣

∣

C

= 4. (2.15)

Since S1 and S2 lie respectively in the regions V < 0 and U < 0, we also have that

ψ1(Z, ~XT ) > 0, ψ2(Z, ~XT ) > 0.

The two functions ψ1(Z, ~XT ) and ψ2(Z, ~XT ) have to be determined by imposing the

condition that the surface they define is marginally trapped [12], i.e. that the congruence

of outgoing null geodesics orthogonal to the surface has zero expansion. We consider a

symmetric head-on collision where Φ1(Z, ~XT ) = Φ2(Z, ~XT ) ≡ Φ(Z, ~XT ) and ψ1(Z, ~XT ) =

ψ2(Z, ~XT ) ≡ ψ(Z, ~XT ) and define the rescaled function

Ψ(Z, ~XT ) ≡ L

Z
ψ(Z, ~XT ). (2.16)

In the O(D − 2)-symmetric case this function depends only on the chordal coordinate.2

Then the condition of zero expansion reduces to the equation [6]
[

q(1 + q)∂2
q +

1

2
(D − 2)(1 + 2q)∂q − (D − 2)

]

[

Φ(q) − Ψ(q)
]

= 0, (2.17)

supplemented by the boundary conditions (2.14) and (2.15) which now are the following

boundary conditions at q = qC

Ψ(qC) = 0, Ψ′(qC) = − 2L
√

qC(1 + qC)
. (2.18)

The function Φ(q) appearing in equation (2.17) is known and given in terms of the density

ρ(q). Hence, eq. (2.17) can be solved subjected to the boundary conditions (2.18). A

solution to this problem, and therefore a marginally closed trapped surface, exists whenever

there is a value of qC solving the transcendental equation [6]

8πGNL

∫ qC

0
dq[q(1 + q)]

D−4

2 (1 + 2q)ρ(q) = (1 + 2qC)[qC(1 + qC)]
D−3

2 . (2.19)

In ref. [6] the situation considered was the head-on collision of two identical shock

waves corresponding to the gravitational field created by a massless point particle with

energy µ,

ρ(q) =
2(2L)2−D

Vol(SD−3)

µ

[q(1 + q)]
D−4

2

δ(q − ǫ). (2.20)

where ǫ → 0+ shifts the support of the delta function into the q > 0 domain. From

eq. (2.19), the existence of the marginally closed trapped surface is determined by the

solution to the equation

[

qC(1 + qC)
]

D−3

2

(1 + 2qC) =
8πGNµ(2L)3−D

Vol(SD−3)
. (2.21)

2On the hypersurfaces {U = 0, V < 0} and {V = 0, U < 0} we have Z = z and ~XT = ~xT . Then the

chordal coordinate q in this case is also given by eq. (2.5).
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The function on the left-hand side of this equation grows monotonically from zero and

asymptotically behaves as qD−2
C . Hence, there always exists a (unique) solution to the

equation and therefore a marginally trapped surface.

In what follows, however, we would like to consider the situation in which the colliding

shock waves describe the infinite boost of an extended source. This corresponds to a func-

tion ρ(z, ~xT ) whose support does not have zero measure in the hyperbolic space HD−2 [6].

To preserve O(D − 2) symmetry, we take the following form for the rescaled density ρ(q)

ρ(q) =
2(2L)2−D

Vol(SD−3)

µ

[q(1 + q)]
D−4

2

F (ω, q), (2.22)

where ω > 0 is a parameter and the function F (ω, q) > 0 is integrable and normalized

according to
∫ ∞

0
dq F (ω, q) = 1. (2.23)

In addition, we require the wave profile Φ(q) to have a well behaved asymptotic limit

as q → ∞ or, in other words, to have finite energy. Then, from eq. (2.11) we derive

the condition
∫ ∞

0
dq (1 + 2q)F (ω, q) <∞. (2.24)

In the following we are going to focus on functions F (ω, q) which regularize the delta

function δ(q − ǫ) in eq. (2.20), i.e.

lim
ω→0+

F (ω, q) = δ(q − ǫ) (2.25)

and that satisfy the condition (2.24). The parameter ω, which measures the width

of the energy distribution in transverse space, can be interpreted here as a kind of

diluting parameter.

Our aim here is to study the formation of marginally closed trapped surfaces in the

collision of two shock waves sourced by extended energy distributions in transverse space. In

particular, we focus on a physical situation in which the profile of the energy distribution,

given by F (ω, q), decreases monotonously as a function of q. In other words, we are

interested in describing the smearing of a delta function distribution with a characteristic

width given by the diluting parameter ω. The function F (ω, q) is required to be regular at

q = 0, bounded and piecewise continuous.3

Using (2.22) the condition for the marginally trapped surface now reads

8πGNµ(2L)3−D

Vol(SD−3)

∫ qC

0
dq (1 + 2q)F (ω, q) = (1 + 2qC)[qC(1 + qC)]

D−3

2 . (2.26)

It proves to be convenient to make a change of variables in the integral to eliminate the

dependence of the integration limits on qC. This gives

qC

∫ 1

0
du (1 + 2qCu)F (ω, qCu) =

(2L)D−3Vol(SD−3)

8πGNµ
(1 + 2qC)[qC(1 + qC)]

D−3

2 . (2.27)

3Our analysis also include square profiles of the type F (ω, q) ∼ θ(ω−q), with θ(x) the unit step function.
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Written in this way the left-hand side of the equation is independent of the dimension and

its global behavior can be easily studied. First of all, from the finite energy condition (2.24)

we have

lim
qC→∞

qC

∫ 1

0
du (1 + 2qCu)F (ω, qCu) = lim

qC→∞

∫ qC

0
dq (1 + 2q)F (ω, q) = constant, (2.28)

i.e., the left-hand side of eq. (2.27) saturates to a constant for large values of qC . On the

other hand, for small qC we have

qC

∫ 1

0
du (1 + 2qCu)F (ω, qCu) ∼ F (ω, 0)qC . (2.29)

Then we find that the left-hand side of eq. (2.27) is a monotonous growing function of qC
that behaves linearly at qC → 0+ and saturates to an ω-dependent constant for qC → ∞.

The discussion of the existence of solutions to eq. (2.27) has to be done separately for

different dimensions.

D = 4. In four dimensions eq. (2.27) reads

qC

∫ 1

0
du (1 + 2qCu)F (ω, qCu) =

L

2GNµ
(1 + 2qC)

√

qC(1 + qC). (2.30)

The right-hand side of this equation is a monotonous function of qC that starts at the origin

with infinite slope and behaves asymptotically as q2C . Depending on the value of ω, the

curves defined by both sides of (2.30) have two, one or no intersecting points, apart from

the trivial solution qC = 0. We see that there is a critical value ω∗ such that for ω > ω∗

there are no nontrivial solutions to eq. (2.30), whereas for ω < ω∗ the two curves meet at

two finite values of qC . The critical value of ω is determined by the condition that the two

curves osculate at a critical value q∗C. This means that at qC = q∗C both sides of eq. (2.30)

and their first derivatives coincide.

It is important to realize that the two solutions to eq. (2.30) correspond to two trapped

surfaces with different size qC . This means that one of the surfaces is inside the other.

Since the apparent horizon is defined as the boundary of the trapped region we consider

only the outermost marginally trapped surface, which corresponds to the upper branch of

the solution.

To keep the analysis general let us denote by G(ω, qC) the difference between the two

sides of eq. (2.30). Then ω∗ and q∗C are determined by

G(ω∗, q∗C) = 0, G(0,1)(ω∗, q∗C) = 0, (2.31)

where we have used an obvious notation for the partial derivatives. Since both sides of

eq. (2.30) are analytic for qC > 0, we can expand G(ω, qC) around ω = ω∗ and qC = q∗C .

Solving now the equation G(ω, q) = 0 and using then the conditions (2.31) we find at

leading order for ω . ω∗

qC − q∗C ∼
√

2G(1,0)(ω∗, q∗C)

G(0,2)(ω∗, q∗C)
(ω∗ − ω)

1

2 , (2.32)
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where the argument of the square root is positive whenever a solution to the equa-

tions (2.31) exists.

To summarize, we have found that for D = 4 there is a threshold in ω for the formation

of the marginally trapped surface defined by eq. (2.13). This surface only exists for values

of ω smaller than the critical value ω∗ and its size is finite at threshold. This is reminiscent

of the situation encountered in the so-called type I critical black hole formation [2]. From

eq. (2.32) we find that in our case we find a critical exponent γ = 1
2 .

D = 5. The equation determining qC is now

qC

∫ 1

0
du (1 + 2qCu)F (ω, qCu) =

2L2

GNµ
qC(1 + 2qC)(1 + qC). (2.33)

The function on the right-hand side grows monotonically and behaves linearly at qC = 0

with slope 2L2

GN µ
while at large qC grows like q3C . Therefore from eq. (2.29) we find that the

two curves on both sides of (2.33) intersect at a single point at finite qC whenever

2L2

GNµ
< F (ω, 0). (2.34)

For any regularization of the delta function, F (ω, 0) monotonously decreases with ω. Then,

the previous equation determines a critical value of the diluting parameter ω∗

F (ω∗, 0) =
2L2

GNµ
, (2.35)

and a solution to eq. (2.33) exists only when ω < ω∗, whereas for ω > ω∗ there are no

marginal trapped surfaces of the type we are studying.

From eq. (2.33) the size of the trapped surfaces vanishes for ω = ω∗, that is, qC = 0.

Hence, the scaling of qC with ω∗ − ω for slightly subcritical values of ω can be found by

expanding the function F (ω, qC) in (2.33) in series about qC = 0. Taking into account that

for regularizations of the delta function we have that F (0,1)(ω, 0) = 0 we have

F (ω, qC) =
2L2

GNµ
− F (1,0)(ω∗, 0)(ω∗ − ω) +

1

2
F (0,2)(ω∗, 0)q2C + . . . (2.36)

Plugging this expansion into eq. (2.33) and solving for qC we find that the scaling for ω . ω∗

is given by

qC ∼ GNµ

4L2
|F (1,0)(ω∗, 0)|(ω∗ − ω) . (2.37)

Our analysis of the five-dimensional case shows the existence of a critical value of the

diluting parameter ω above which there are no solutions to the equation for the marginally

trapped surface. We find that at ω∗ there is a trapped surface of finite size, whereas for

subcritical values of ω we have a scaling characterized by a critical exponent γ = 1. This

behavior of the size of the marginally trapped surfaced formed in the collision is similar to

the type II criticality found by Choptuik in black hole formation [1, 2].
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D ≥ 6. From eq. (2.27) we see that the right-hand side behaves at the origin as q
D−3

2

C ,

where now the exponent is larger than one. This means that the slope of the curve is zero

at the origin. At the same time, for large qC the function grows as qD−2
C . Recalling the

global behavior found above for the left-hand side of (2.27) we conclude that the two curves

always meet at a single point and, as a consequence, a marginally closed trapped surface

of the sought type is always formed. In this case we find no critical behavior of any kind.

3. The case of Minkowski space-time

It is very interesting to know how the previous results depend on the presence of a non-

vanishing cosmological constant. To clarify this point, we study the head-on collision of

two shock waves in Minkowski space-time. The metric corresponding to the first wave

is (v < 0)

ds2 = −dudv + d~x 2
⊥ + Φ1(~x⊥)δ(u)du2, (3.1)

whereas the line element for the second wave (u < 0) can be obtained from the previous

equation by replacing u→ v and Φ1(~x⊥) → Φ2(~x⊥).

The whole analysis performed in the previous section can be carried out also in

Minkowski space-time. Equivalently, the equations for the O(D − 2)-symmetric case in

flat space-time can be obtained from the ones for AdS by noticing that AdS space-time is

locally equivalent to Minkowski space-time. We follow this approach.

Let us consider a small neighborhood of the point z = L, ~xT = ~0 in HD−2. Defining

z ≡ z−L and studying the limit |~xT | ≪ L, z ≪ L, we find that the chordal coordinate (2.5)

can be written as

q =
z 2 + ~x 2

T

4L(z̄ + L)
≃ 1

4L2

(

z̄ 2 + ~x 2
T

)

≡ ~x 2
⊥

4L2
, (3.2)

where we have defined the Minkowskian transverse coordinate xa
⊥ = (z̄, xi

T ), with a =

1, . . . ,D− 2. To keep the analogy with the AdS case, we introduce a fiducial length ℓ and

define the dimensionless quantity

p ≡ ~x 2
⊥

4ℓ2
. (3.3)

We should stress that the scale ℓ is completely arbitrary. In the limit (3.2) the chordal

coordinate is replaced by

q −→ ℓ2

L2
p. (3.4)

Now, the Minkowski field equations can be obtained from eq. (2.8) by making the replace-

ment (3.4) together with Φ(q) → Φ(p) and taking the limit L → ∞ at the end. Doing so

we find4

pΦ′′(p) +
D − 2

2
Φ′(p) = −16πGN ℓ

2ρ(p). (3.5)

4Unlike in the case of the AdS equation (2.8), here there is no need to introduce a rescaled density. This

can be seen by noticing that z

L
= 1 + z̄

L
tends to one in the limit L → ∞ with z̄ fixed.
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The regular solution to the inhomogeneous problem (3.5) can be written as

Φ(p) =

∫ ∞

0
dp′ p′

D−4

4 G(p, p′)ρ(p′) (3.6)

with

G(p, p′) =
8πGN ℓ

2

D − 1

[

p′−
D−4

2 θ(p′ − p) + p−
D−4

2 θ(p− p′)
]

. (3.7)

If the density ρ(p) has compact support, or decreases fast enough at large p, the solution

Φ(p) behaves asymptotically as

Φ(p) ∼ 26−Dℓ4−DπGN

Vol(SD−3)(D − 1)
E p−

D−4

2 , p→ ∞, (3.8)

where the energy E is given by

E = 2D−3ℓD−2Vol(SD−3)

∫ ∞

0
dp′ p′

D−4

2 ρ(p′). (3.9)

The calculation of marginally trapped surfaces in the collision of two shock waves in

flat space-time has been done [8 – 10] and can be carried out following essentially the same

steps taken above for the AdS case. Changing coordinates from (u, v, ~x⊥) to (U, V, ~X⊥) [9]

to eliminate the Dirac delta terms in the metric, we consider a candidate for the marginally

trapped surface as the union of the two surfaces S1 and S2 defined by

S1 :

{

U = 0

V + Ψ1( ~X⊥) = 0
, S2 :

{

V = 0

U + Ψ2( ~X⊥) = 0
, (3.10)

where S1 lies in the region V < 0 and S2 in U < 0. The functions Ψ1( ~X) and Ψ2( ~X) are

positive semidefinite and vanish only at the intersection of the two surfaces, C = {U = V =

0}. We are interested in studying the case of the head-on collision of two identical waves,

Φ1( ~X) = Φ2( ~X), where we have that Ψ1( ~X⊥) = Ψ2( ~X⊥) ≡ Ψ( ~X⊥). Here we consider the

O(D − 2)-symmetric case in which Φ( ~X⊥) and Ψ( ~X⊥) depend only on p =
~X2
⊥

4ℓ4
. Then it

can be shown that the surface S1 ∪ S2 is a marginally trapped surface provided

8πGN ℓ

∫ pC

0
dp′ p′

D−4

2 ρ(p′) = p
D−3

2

C (3.11)

admits a solution for pC . This solution gives the radius of the surface at C, the function

Ψ(p) determining S1 ∪ S2 being given by

Ψ(p) = Φ(p) − Φ(pC). (3.12)

As in the case of AdS, here we are going to study what happens when the density ρ(p)

is smeared in transverse space with a width ω. In technical terms, we consider a density

of the form

ρ(p) =
2(2ℓ)2−D

Vol(SD−3)

µ

p
D−4

2

F (ω, p), (3.13)
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where F (ω, p) is a smearing of the Dirac delta function satisfying eqs. (2.23) and (2.25).

From the definition of the energy (3.9) we see that the latter condition implies that the

corresponding solution has finite energy. The trapped surface condition (3.11) then reads

pC

∫ 1

0
duF (ω, pCu) =

(2ℓ)D−3Vol(SD−3)

8πGNµ
p

D−3

2

C . (3.14)

Again, the left-hand side is independent of the dimension, its properties being very similar

to the ones derived for the corresponding integral in the AdS case: it is a monotonously

growing function of qC, with slope F (ω, 0) at the origin and saturates to a constant for

pC → ∞. To find the solutions to the equation we analyze the case for different dimensions.

D = 4. In this case the equation to solve is

pC

∫ 1

0
duF (ω, pCu) =

ℓ

2GNµ

√
pC . (3.15)

The situation is the same we found in the case of AdS4. Namely, there is a critical value

ω = ω∗ at which the curves in the left- and right-hand side of eq. (3.15) osculate. For

ω > ω∗ the two curves do not cross at nonzero ω and as a consequence there is no solution

of the trapped surface conditions. For subcritical values of ω the curves meet at two points

corresponding to two different values of pC . For the same reasons explained in the previous

section, we choose the largest value.

The analysis of the behavior of the solutions when ω . ω∗ carried out for AdS is

completely general and can be applied to this case as well. It is found that the trapped

surface has a nonvanishing size at criticality p∗C with a scaling characterized by a critical

exponent γ = 1
2 , as given in eq. (2.37).

D = 5. The structure of solutions of

pC

∫ 1

0
duF (ω, pCu) =

2ℓ2

GNµ
pC (3.16)

is analogous to the AdS case. This equation has a single solution whenever

2ℓ2

GNµ
< F (ω, 0), (3.17)

which implies the existence of a critical value ω∗ such that for ω > ω∗ no solution to

eq. (3.16) exists. To find the critical behavior for ω∗ we notice that for ω = ω∗ the size of

the trapped surface is zero and therefore eq. (3.16) can be solved for ω . ω∗ by expanding

F (ω, pC) around (ω∗, 0). Plugging

F (ω, pC) =
2ℓ2

GNµ
− F (1,0)(ω∗, 0)(ω∗ − ω) +

1

2
F (0,2)(ω∗, 0)p2

C + . . . (3.18)

into eq. (3.16) and solving the equation for pC results in

pC ∼
√

4F (1,0)(ω∗, 0)

F (0,2)(ω∗, 0)
(ω∗ − ω)

1

2 . (3.19)
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This means that the critical formation of the trapped surface is characterized by a critical

exponent γ = 1
2 . It is important to keep in mind that in writing the expansion (3.18) we

have used that F (ω, pC) is an even function in pC . In addition, the square root in (3.19) is

always real since for any delta function regularization both F (1,0)(ω∗, 0) and F (0,2)(ω∗, 0)

are negative.

D ≥ 6. The situation in dimensions larger than five is identical to the one found in AdS,

namely there is always a solution to eq. (3.14) for any value of ω.

We have seen that the results found in Minkowski space-time for the generation of

marginally trapped surfaces are qualitatively the same as the AdS ones. For both D = 4

and D = 5 we have a critical value of the diluting parameter ω above which there are no

solutions. In D = 4 we found that the critical behavior is of type I, i.e. the size of the

trapped surface at criticality is finite, whereas for D = 5 this critical size vanishes. For

D ≥ 6 there is no critical behavior in both cases. The main difference between the AdS

and Minkowski cases lies in the value of the critical exponent for D = 5, which is γ = 1 in

AdS and γ = 1
2 in flat space-time. The reason for this difference lies in the presence of the

factor 1+2qCu in the integrand of eq. (2.33). Because of it, the next-to-leading behavior of

the integral on the left-hand side of this equation is linear in qC near the critical value of ω.

This is completely different in Minkowski space-time, where the next-to-leading behavior

of the integral in (3.16) near ω∗ is quadratic in pC. This difference is responsible for the

change in the value of the critical exponent.

4. Concluding remarks

In this paper we have studied the formation of marginally trapped surfaces in the head-on

collision of two shock waves as a function of the spread of energy in transverse space. For

D = 4 and D = 5 we found respectively the existence of type I and type II criticality

in both Minkowski and AdS space-time. This critical behavior is reminiscent of the one

encountered in numerical simulations of gravitational collapse [1, 2].

In the lower dimensional case (3 < D < 6) we found that the type of trapped surfaces

studied here is not formed when the incoming waves become too “diluted” in energy. This,

however, cannot be interpreted as implying that there is no apparent horizon, or eventually

a black hole, formed as the result of the head-on collision. To decide on this issue it would

be necessary to solve the wave collision problem into the interaction region U > 0, V > 0.

However, it seems rather remarkable that when the trapped surface forms its size follows

a scaling rule with a well-defined critical exponent. The analysis we have presented here

shows that the values of these exponents are quite independent of the particular form of

the (rescaled) density function in transverse space.

It is interesting to notice that the Choptuik exponent for the formation of trapped

surfaces for shock waves in five dimensions agrees with the parton saturation exponent

computed for N = 4 super Yang Mills at strong coupling [13]. This agreement could be

interpreted as some additional evidence on the connection between black hole formation

and parton saturation suggested in [3] in the strong coupling regime where the AdS/CFT

correspondence is more reliable.
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As a final remark, we would like to point out that the type of critical behavior described

in this work takes place in a setup in which gravity is weak. This is an important difference

with respect to critical behavior in black hole formation [1, 2] where the curvature becomes

large at the location of the forming black hole.
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[3] L. Álvarez-Gaumé, C. Gómez and M.A. Vázquez-Mozo, Scaling phenomena in gravity from

QCD, Phys. Lett. B 649 (2007) 478 [hep-th/0611312];
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